话题建模
使用话题建模技术识别内容主题和趋势
话题建模概述
话题建模自动识别文档主题[1],发现隐藏模式[2],指导内容策略[3]。
核心算法
LDA(Latent Dirichlet Allocation)[4]
- 概率主题模型、文档-主题分布、主题-词分布
NMF(Non-negative Matrix Factorization)[5]
- 矩阵分解、非负约束、主题提取
BERTopic[6]
- 基于BERT、聚类方法、动态主题
应用场景
内容分析[7]
- 主题识别、趋势发现、内容分类
策略规划[8]
- 主题缺口、内容机会、优先级排序
竞品分析[9]
- 主题对比、覆盖度分析、差异化机会
工具支持
Python库[10]
- Gensim、scikit-learn、BERTopic
相关资源
参考文献
-
Stanford NLP. (2024). "Topic Modeling". NLP Course. https://web.stanford.edu/class/cs224n/
-
Journal of Machine Learning Research. (2024). "LDA". Research Paper. https://www.jmlr.org/papers/v3/blei03a.html
-
Content Marketing Institute. (2024). "Topic Analysis". Strategy. https://contentmarketinginstitute.com/
-
Gensim. (2024). "LDA Model". Documentation. https://radimrehurek.com/gensim/models/ldamodel.html
-
scikit-learn. (2024). "NMF". Documentation. https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
-
BERTopic. (2024). "Topic Modeling". Library. https://maartengr.github.io/BERTopic/
-
Semrush. (2024). "Content Analysis". Tools. https://www.semrush.com/
-
HubSpot. (2024). "Content Strategy". Planning. https://blog.hubspot.com/marketing/content-strategy
-
Ahrefs. (2024). "Competitive Analysis". SEO Tools. https://ahrefs.com/blog/competitive-analysis/
-
Gensim. (2024). "Topic Modeling Library". Python. https://radimrehurek.com/gensim/
更新日期:2025-11
词条状态:✅ 已完成