高级技术

Prompt工程

优化Prompt设计,提升AI生成内容质量和相关性

Prompt工程概述

Prompt工程设计有效的提示词[1],引导AI生成期望输出[2]

核心原则

清晰明确[3]

  • 具体指令、明确目标、详细要求

上下文充分[4]

  • 背景信息、示例参考、约束条件

结构化[5]

  • 分步骤、有逻辑、可验证

常用技巧

Few-Shot Learning[6]

  • 提供示例、展示格式、引导风格

Chain of Thought[7]

  • 分步推理、逻辑链条、中间步骤

Role Prompting[8]

  • 角色设定、专业视角、特定风格

应用场景

内容生成[9]

  • 文章创作、问答生成、内容优化

数据提取[10]

  • 信息抽取、结构化输出、数据转换

相关资源


参考文献

  1. OpenAI. (2024). "Prompt Engineering". Best Practices. https://platform.openai.com/docs/guides/prompt-engineering

  2. Anthropic. (2024). "Prompt Design". Claude Guide. https://docs.anthropic.com/claude/docs/prompt-design

  3. Google. (2024). "Prompting Guide". Gemini Documentation. https://ai.google.dev/docs/prompting_intro

  4. OpenAI. (2024). "Context Window". Technical Guide. https://platform.openai.com/docs/guides/

  5. Microsoft. (2024). "Prompt Engineering". Azure AI. https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/prompt-engineering

  6. OpenAI. (2024). "Few-Shot Learning". Techniques. https://platform.openai.com/docs/guides/prompt-engineering/strategy-provide-examples

  7. Google AI. (2024). "Chain of Thought". Research. https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html

  8. Anthropic. (2024). "Role Prompting". Techniques. https://docs.anthropic.com/

  9. OpenAI. (2024). "Content Generation". Use Cases. https://platform.openai.com/docs/guides/

  10. LangChain. (2024). "Data Extraction". Documentation. https://python.langchain.com/docs/use_cases/extraction/


更新日期:2025-11
词条状态:✅ 已完成