高级技术

实体识别优化

优化内容中的实体标注,提升AI引擎识别和引用准确性

实体识别概述

**实体识别(NER)**识别文本中的关键实体[1],是AI理解内容的基础[2]

实体类型

基础实体[3]

  • 人名(PERSON)、地名(LOCATION)、组织(ORGANIZATION)、时间(DATE)

领域实体[4]

  • 产品名、品牌名、技术术语、行业概念

优化方法

明确标注[5]

  • 首次出现完整名称、使用Schema标记、上下文清晰

一致性[6]

  • 统一命名、避免歧义、规范表达

结构化[7]

  • Schema.org标记、JSON-LD格式、微数据

技术实施

Schema标记示例[8]

{
  "@context": "https://schema.org",
  "@type": "Person",
  "name": "张三",
  "jobTitle": "CEO",
  "worksFor": {
    "@type": "Organization",
    "name": "公司名称"
  }
}

相关资源


参考文献

  1. Stanford NLP. (2024). "Named Entity Recognition". NLP Guide. https://nlp.stanford.edu/software/CRF-NER.html

  2. spaCy. (2024). "Entity Recognition". Documentation. https://spacy.io/usage/linguistic-features#named-entities

  3. OntoNotes. (2024). "Entity Types". Annotation Standard. https://catalog.ldc.upenn.edu/LDC2013T19

  4. ACL. (2024). "Domain-Specific NER". Research. https://www.aclweb.org/

  5. Google. (2024). "Entity Markup". Structured Data. https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data

  6. W3C. (2024). "Naming Conventions". Best Practices. https://www.w3.org/

  7. Schema.org. (2024). "Entity Schemas". Vocabulary. https://schema.org/

  8. Google. (2024). "JSON-LD". Implementation Guide. https://developers.google.com/search/docs/appearance/structured-data/intro-structured-data#structured-data-format


更新日期:2025-11
词条状态:✅ 已完成